Lab Experiment Overview

Kelley Barsanti, unofficially representing studies at the Missoula Fire Lab

ACOM/ACCORD Fire Workshop

July 13th - 14th, 2017

Missoula Fire Lab

Missoula Fire Sciences Lab, Missoula, Montana https://www.firelab.org

Established in 1960 (50 year dedication: https://www.fs.fed.us/rm/pubs/rmrs_gtr270.pdf)

The research conducted at the Fire Lab over the past 50 years has been diverse, complex, and multi-dimensional, involving hundreds of scientists, engineers, skilled technicians, and support personnel. Researchers have focused on every-thing from fundamental physics to the effects of fire on ecosystems over time, and have examined questions at a variety of scales from the microscopic to satel-lite images of the earth. Some researchers have looked to the past to understand the history of fire, while others have investigated the effects of fire on global climate change and, thus, on the long-term future of the planet.

Two Campaigns: FLAME-IV and FIREX

- Fourth Fire Lab at Missoula Experiment (FLAME-IV)
- Oct. Nov. 2012
- ~ 40 instruments
- grasses, peat, coniferous canopy fuels, cooking stove fuels, tires, and trash(!)
- focus on: historically undersampled fuels, application of advanced instrumentation
- gas and particle emissions and evolution
- organizational support: CMU and CSU
- funding support: NASA, NSF

- Fire Influence on Regional and Global Environments Experiment (FIREX)
- Oct. Nov. 2016
- ~ 60 instruments
- western wildfire fuels
- focus on: atmospheric impacts of fires
 -air quality and climate; linking
 laboratory and field studies
- gas and particle emissions and evolution, particle properties; nitrogen budget
- organizational and funding support: NOAA CSD, NOAA AC4

Burn Configurations

- Fuels chosen to represent "field" conditions (moisture levels, loadings)
- Stacked to burn under "field" conditions (combustion efficiency)

http://ciresblogs.colorado.edu/firex/2016/ https://christinajwilliamson.wordpress.com/201 6/11/12/setting-stuff-on-fire-for-science/

- Combustion chamber: 12.5 m x 12.5 m x 22 m
- Room burns: chamber sealed for tens of minutes, smoke well-mixed in room

- Inverted funnel (3.6 m diam.) connected to exhaust vent (1.6 m diam.), opening 2 m above fuel bed, sampling platform 17 m above fuel bed
- Stack burn: emissions travel through stack, sampling at ~5 s, 2-30 min duration

FLAME-IV: Instrument List and Fuels

Preliminary
instrument/
participant
list:

	LAAP-TOF	CMU
	HR-TOF-AMS	CMU
	SMPS	CMU
,	SP2 (?)	CMU
	PTRMS	CMU
	Criteria gases (NOx, CO2)	CMU
	Aethalometer (?)	CMU
		CMU
	CFDC	CSU
	SP2	CSU
	H-TDMA	CSU
	HR-TOF-AMS	CSU
	PILS (inc pump)	CSU
	PTR-TOF-MS	U-MONT
	OP-FTIR	U-MONT
	LAFTIR (Opt)	U-MONT
	AFTIR (Opt)	U-MONT
	WAS>GC-XX	UCI/RSMAS
	OH REACTIVITY	MPI
	тнс	MPI
	MOUDI	PNNL
	PILS (inc pump)	PNNL
	UV-EXT-AEROSOL	NOAA
	ASTER	U-WYO
	CAPS	U-WYO
	PAS	U-WYO
	N2O5	U-WASH
	PASS-3a (Ambient)	LANL
	PASS-3d (Ambient/Denuded)	LANL
	PASS-UV	LANL
	SP2	LANL
	LAS (optical sizer)	LANL
	SMPS (with pump)	LANL
	PICARRO	LANL
	CAPS-Blue	LANL
	SEM	LANL
	MOVI-CIMS ?	AERODYN
	CRDS ?	U-WISC
	GC-2D	PSU

Table 1. Summary of fuels burned and fuel elemental analysis (see Sect. 2.2 for fuel descriptions).

	Fuel	Stack exp.	Room exp.	Environmental chamber exp.	Fuel type	Sampling location (s)
Fuels list:	African grass (tall)	11	1	0	Savanna/sourveld/tall grass	Kruger National Park, R.S.A.
	African grass (short)	8	0	0	Savanna/sweetveld/short grass	Kruger National Park, R.S.A.
	Giant cutgrass	5	3	2	Marsh	Jasper Co., SC
	Sawgrass	12	1	0	Marsh	Jasper Co., SC
	Wiregrass	7	2	1	Pine forest understory	Chesterfield Co., SC
	Peat (CAN)	3	0	0	Boreal peat	Ontario and Alberta, CAN
	Peat (NC)	2	1	0	Temperate peat	Green Swamp and Alligator River NWR, NC
	Peat (IN)	2	1	1	Indonesian peat	South Kalimantan
	Organic alfalfa	3	0	0	Crop residue	Fort Collins, CO
	Organic hay	6	2	1	Crop residue	Fort Collins, CO
	Organic wheat straw	6	2	0	Crop residue	Fort Collins, CO
	Conventional wheat straw	2	0	0	Crop residue	Maryland
	Conventional wheat straw	2	1	0	Crop residue	Walla Walla Co., WA
	Sugar cane	2	1	0	Crop residue	Thibodaux, LA
	Rice straw	7	4	1	Crop residue	CA, China, Malaysia, Taiwan
	Millet	3	0	0	Crop residue and Cookstove fuel	Ghana
	Red oak	5	0	0	Cookstove fuel	Commercial lumberyard
	Douglas fir	3	0	0	Cookstove fuel	Commercial lumberyard
	Okote	2	0	2	Cookstove fuel	Honduras via commercial lumberyard
	Trash	2	0	0	Trash or waste	Missoula, MT
	Shredded tires	2	0	0	Trash or waste	Iowa City, IA
	Plastic bags	1	0	0	Trash or waste	Missoula, MT
	Juniper	2	0	0	Temperate forest	Outskirts Missoula, MT
	Ponderosa pine	11	5	10	Temperate forest	Outskirts Missoula, MT
	Black spruce	5	7	9	Boreal forest	South of Fairbanks, AK
	Chamise	7	1	0	Chaparral	San Jacinto Mtns, CA
	Manzanita	3	1	0	Chaparral	San Jacinto Mtns, CA
	Total	124	33	27		

Stockwell et al., ACP, 2014, 14: 9727-9754

FLAME-IV: Publications (*Not* Comprehensive)

Atmos. Chem. Phys., 14, 9727-9754, 2014 www.atmos-chem-phys.net/14/9727/2014/ doi:10.5194/acp-14-9727-2014 C Author(s) 2014. CC Attribution 3.0 License.

 \odot \odot

Atmospherie °

Chem Rapidly evolving ultrafine and fine mode biomass smoke physical properties: and Phy Comparing laboratory and field results

By: Carrico, Christian M.; Prenni, Anthony J.; Kreidenweis, Sonia M.; et al. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES Volume: 121 Issue: 10 Pages: 5750-5768 Published: MAY 27 2016

Trace gas emissions from combustion of peat, crop residue, domestic

transform infrared (FTIR) component of the fourth Fire **Missoula Experiment (FLAME-4)**

C. E. Stockwell¹, R. J. Yokelson¹, S. M. Kreidenweis², A. L. Robinson³, P. J. DeMott², R. C. Sulliva K. C. Ryan⁴, D. W. T. Griffith⁵, and L. Stevens⁶

biofuels, grasses, and other fuels: configuration and Four Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors

> By: Hatch, Lindsay E.; Yokelson, Robert J.; Stockwell, Chelsea E.; et al. ATMOSPHERIC CHEMISTRY AND PHYSICS Volume: 17 Issue: 2 Pages: 1471-1489 Published: JAN 31 2017

Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-offlight mass spectrometry

By: Stockwell, C. E.; Veres, P. R.; Williams, J.; et al. ATMOSPHERIC CHEMISTRY AND PHYSICS Volume: 15 Issue: 2 Published: 2015

Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions

By: Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; et al. ATMOSPHERIC CHEMISTRY AND PHYSICS Volume: 17 Issue: 8 Pages: 5063-5078 Published: APR 19 2017

FLAME-IV: Findings

Hatch et al., ACP, 2017, 122: 6043-6058

- Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS), twodimensional gas chromatography-time-offlight mass spectrometry (GC×GC-TOFMS), Open-path Fourier transform infrared spectroscopy (OP-FTIR), whole-air sampling (WAS) + gas chromatographymass spectrometry (GCMS) analysis
- Highly complementary, cover a range of compositional space
- Database of >500 non-methane organic gases, 6-11% of EF IVOC, 55-77% total reactive carbon SOA yields understudies or unknown

Tkacik et al., *JGR*, 2017, 122: 6043-6058

- SOA formation in nearly every experiment, average organic aerosol (OA) mass enhancement ratio of 1.78 ± 0.91
- Highly variable; no apparent relationship between OA enhancement and perturbation type, fuel type, and modified combustion efficiency.
- Gas measurements substantial burn-toburn variability in the magnitude and composition of SOA precursor emissions

OA mass enhancement = $\frac{OA_t/BC_t}{OA_0/BC_0}$

FIREX: Instrument/Participant List (Gas Phase)

		Gas Phase Species							
CO, CO ₂ , CH ₄ , HCHO, NO, NO ₂ , NH ₃ , HCN, HONO, etc.	OP-FTIR	Open path FTIR spectrometer, situated at the top of the stack. Can also sample room burns.	B. Yokelson	U. Montana	VOCs	H₃O⁺ ToF	Various VOCs using chemical ionization mass spectrometer using $H_3O^{\rm +}$ as reagent ion	Bin Yuan, Abby Koss, Matt Coggon, Carsten Warneke	NOAA ESRL CSD
CO, CH ₄ , C ₂ H ₆ , HCN, HCHO, N ₂ O	TILDASs	Tunable IR laser direct absorption spectroscopy	S. Herndon, T. Yacovitch, J. Boscolli	Aerodyne	VOCs	GC/MS	Gas chromatograph/Mass spectrometer, direct or canister sampling	Jessica Gilman, Brian Lerner	NOAA ESRL CSD
CO2	LiCOR CO ₂	Non-dispersive Infrared detection	T. Yacovitch	Aerodyne	VOC/LVOC	Gas/Particle Sampling	GCxGC-HRTOFMS including both Electron Impact (EI) ionization and softer vacuum ultraviolet (VUV) ionization	Allen Goldstein	UC Berkeley
VOCs	PTR-MS	Proton-Transfer Reaction Mass Spectrometry	B. Knighton	Aerodyne	VOC/LVOC/ELVOC	I' ToF	lodide ion CIMS especially for N- and CI-containing VOCs	Bin Yuan,	NOAA ESRL
Total Hydrocarbons	THC	Flame ionization detection	T. Yacovitch, B. Knighton	Aerodyne				Carsten Warneke, Joost de Gouw, Jose	CSD, CU
NO, NOy	NOx box	O_3 Chemiluminescence, catalytic conversion	C. Daube	Aerodyne				Jimenez	
HO ₂ + RO ₂	ECHAMP	C ₂ H ₆ + NO chemical amplification	E. Wood	U. Mass	LVOC/ELVOC	Various Methods	GC/MS, UPLC/DAD-ESI-QToFMS, ACSM, and FIGEARO- CIMS	Barbara Turpin, Jason Surrat	UNC Chapel Hill
VOCs, SVOCs, HONO, PA radical	I' CIMS	lodide ion chemical ionization mass spectrometry, may be converted to NO_3^- ion CIMS for stack measurements	John Nowak	Aerodyne	Gas Phase compounds	Mist Chamber	WSOC, ES-MS/MS	Barbara Turpin, Jason Surrat	UNC Chapel Hill
Gas and Particle partitioning	FIGAERO	Filter Inlet for Gases and AEROsols collector module with I CIMS	John Nowak	Aerodyne	I/SVOC	Cartridge	GCxGC/TOF-MS (EI) and LC/MC	Kelley Barsanti, Lindsay Hatch	UC Riverside
Total Fixed Nitrogen	Ny	Catalytic conversion of all N-containing species (except $N_{\rm 2}$ and $N_{\rm 2}O)$	Jim Roberts, Y. Liu	NOAA ESRL CSD, CU Denver	Nitrogen Isotopes of Nitrite and Nitrate	MC/IC	Mist Chamber/ Ion Chromatograph with off-line isotope MS	Meredith Hastings, Jack	Brown, UNH
Glyoxal, NO ₂ , HONO	ACES	Broadband cavity enhanced spectroscopy	Kyle Zarzana, Steve Brown, Rebecca	NOAA ESRL CSD				Dibb	

FIREX: Instrument/Participant List (Particle Phase)

		Aerosol Measurements							
Fine Mode Composition	ToF AMS	Aerosol mass spectrometer with time-of-flight MS, and light-scattering module	Ann Middlebrook	NOAA ESRL CSD	Brown Carbon Absorption	BrC-PiLS	PiLS sampler with long path liquid phase UV-vis absorption spectrometer	1 Rebecca Washenfelder	NOAA ESRL CSD
Fine Mode Composition	LToF SP-AMS	Aerosol mass spectrometer with high resolution time-of- flight MS, with Soot particle mode	T. Onasch	Aerodyne	Aerosol Absorption, UV-vis	BBCEAS	Broadband cavity absorption spectrometer	Rebecca Washenfelder,	NOAA ESRL CSE
Particle size and	SMPS, OPC,	Scanning mobility particle sizer, Optical particle counter,	T. Onasch	Aerodyne	10			Carrie Womack	
number	CPC	Particle number concentration			Particle	aCRD-PAS	Cavity ring-down and Photo acoustic spectrometers	Nick Wagner	NOAA ESRL CSE
SP2	rBC	Soot photometer	A. Sedlacek	BNL	absorption/extinction				
Black Carbon/Browr Carbon	n Intercomparisor	n Numerous Methods, e.g. EC/OC, light scattering and absorption, CO/CO ₂ , SP2	Gavin McMeeking, And	Droplet y Measurement	Imaging Nephelometer	Aerosol scattering	Scattering as a function of angle	Katherine Manfred	NOAA ESRL CSE
			Мау	Technologies Aerosol chemical	PiLS-ESI/MS	PiLS sampling with electrospray ionization negative ion	Chelsea	NOAA ESRL CSE	
Particle chemistry	BBOA measurements	2 MOUDI impactors, off site analysis by DI/MS	Alex Laskin, PNN Sergey	PNNL, UC Irvine	composition		mass spectrometry	Stockwell, Jim Roberts	
			Nizkorodov		BC/BrC/Optical Prop SP-AMS		Soot particle Aerosol Mass Spectrometer	Chris Cappa	UC Davis
Particle chemistry	BBOA measurements	PiLS with HPLC/UV-Vis/ESI-HRMS analysis of water nts soluble constituents	Alex Laskin, Sergey	PNNL, UC Irvine		CAPS-SSA CRD/PAS	Cavity Attenuated Phase-Shift, Single Scattering Albedo Cavity Ring Down Photoacoustic Spectrometer	Jesse Kroll Collette Heald	MIT
			NIZKOPODOV		Aerosol Chemistry	Filter Sampler	ESI-MS/MS, Brown carbon (absorbance 200-800nm)	Barbara Turpin,	UNC Chapel Hill
Particulate light absorption	CRD-PAS	Dual-wavelength cavity ringdown + photoacoustic spectrometer	Chris Cappa	UC Davis				Jason Surratt	
Particle mobility and	I SEM or SMPS,	MPS,	Chris Cappa UC Da	UC Davis	Particle phase compounds	PiLS	WSOC, ES-MS/MS	Barbara Turpin Jason Surrat	UNC Chapel Hill
distribution	AP3				Aerosol Extinction	PAX	Photoacoustic extinction at two wavelengths	Bob Yokelson	U. Montana
Brown Carbon Absorption	BrC-PiLS	PiLS sampler with long path liquid phase UV-vis absorption spectrometer	Rebecca Washenfelder	NOAA ESRL CSD					

FIREX: Instrument/Participant List (Processing)

		Smoke Processing		
Potential Aerosol Mass	PAM	Measure of changes in aerosol mass, chemistry and other properties in a flow reactor at high reactant (e.g. OH) concentrations	Matt Coggan Jose Jimenez	NOAA ESRL CSE CU
Potential Aerosol Mass	PAM	Measure of changes in aerosol mass, chemistry and other properties in a flow reactor at high reactant (e.g. OH) concentrations	Lambe, T. Onasch, S. Herndon	Aerodyne
Particle Aging Reactor	SP-AMS, CAPS-SSA	Batch reactor photochemical aging of particles with chemical and optical measurements, opportunities for other measurements	Jesse Kroll Chris Cappa	MIT UC Davis
Photochemical processing	Photochemical Chamber(s)	1 or 2 portable chambers for gas phase and SOA processing studies. Instrumentation will include CO ₂ , O ₃ , NOx, SMPS, and oxidative potential (OPA), other measurements will provided by the study participants	Shantanu Jathar	CSU

FLAME-IV: Data Archive

https://esrl.noaa.gov/csd/groups/csd7/measurements/2016firex/FireLab/DataDownload/ (Password Required)

Fire Lab Data Download

Data options:

- Read about data updates (Notices)
- The Fire Lab log file contains dates and times (CO local time) of data submitted.
- The Fire Lab metadata file (V4) contains fire number, times, fuel info, and more. (UPDATED 20170612)
- Download a parameter for all fires.
- The DataID file contains the data IDs used in filenames, and in the data download table.
- · The timewave page contains the start/stop times for each fire.

Search for fires by fuel type ...

or enter fire number directly.

Fire number (i.e. 035) Get Fire

FLAME-IV: Data Log

Fire001

ACES_Fire001_20161004_RA.ict 20170222 1132 FTIR_Fire001_20161004_RA.ict 20161007 1144 FTIR_Fire001_20161004_R0.ict 20170612 1544 H30CIMS-no-ID_Fire001_20161004_RA.ict 20170509 1114 H30CIMS_Fire001_20161004_RA.ict 20161007 1647 H30CIMS_Fire001_20161004_RB.ict 20170509 1015 H30CIMS_Fire001_20161004_R0.ict 20170628 1446 Ny_Fire001_20161004_RA.ict 20161007 1145 Ny_Fire001_20161004_RB.ict 20161229 1356 PAXUMT_Fire001_20161004_RA.ict 20161007 1638

Fire002

ACES_Fire002_20161005_RA.ict 20170222 1133 FTIR_Fire002_20161005_RA.ict 20161007 1145 FTIR_Fire002_20161005_R0.ict 20170612 1544 H30CIMS-no-ID_Fire002_20161005_RA.ict 20170509 1114 H30CIMS_no-ID_Fire002_20161005_R0.ict 20170629 1810 H30CIMS_Fire002_20161005_RA.ict 20161007 1516 H30CIMS_Fire002_20161005_RB.ict 20170509 1015 H30CIMS_Fire002_20161005_R0.ict 20170628 1446 MCICON_Fire002_20161005_RA.ict 20161020 1619 Ny_Fire002_20161005_RA.ict 20161007 1204 Ny_Fire002_20161005_RB.ict 20161229 1350 PAXUMT_Fire002_20161005_RA.ict 20161010 0942

Fire003

ACES_Fire003_20161005_RA.ict 20170222 1133 FTIR_Fire003_20161005_RA.ict 20161010 0934 FTIR_Fire003_20161005_R0.ict 20170612 1545 H30CIMS_Fire003_20161005_RA.ict 20161007 1648 MCICON_Fire003_20161005_RA.ict 20161020 1620 Ny_Fire003_20161005_RA.ict 20161007 1445 Ny_Fire003_20161005_RB.ict 20161229 1350 PAXUMT_Fire003_20161005_RA.ict 20161010 0943

Fire103

CRDPASNOAA_Fire103_20161110_RA.ict 20170316 1649 InletNOAA_Fire103_20161110_RA.ict 20170224 1519 Ny_Fire103_20161110_RA.ict 20161117 1551 Ny_Fire103_20161110_RB.ict 20161229 1433

Fire104

CRDPASNOAA_Fire104_20161111_RA.ict 20170316 1649 FTIR_Fire104_20161111_RA.ict 20170612 1534 InletNOAA_Fire104_20161111_RA.ict 20170224 1519 Ny_Fire104_20161111_RA.ict 20161117 1551 Ny_Fire104_20161111_RB.ict 20161229 1433

Fire105

CRDPASNOAA_Fire105_20161111_RA.ict 20170316 1649 FTIR_Fire105_20161111_RA.ict 20170612 1534 InletNOAA_Fire105_20161111_RA.ict 20170224 1519 Ny_Fire105_20161111_RA.ict 20161117 1551 Ny_Fire105_20161111_RB.ict 20161229 1433

Fire106

CRDPASNOAA_Fire106_20161112_RA.ict 20170316 1649 FTIR_Fire106_20161112_RA.ict 20170612 1534 InletNOAA_Fire106_20161112_RA.ict 20170224 1519 Ny_Fire106_20161112_RA.ict 20161117 1551 Ny_Fire106_20161112_RB.ict 20161229 1433

Fire107

CRDPASNOAA_Fire107_20161112_RA.ict 20170316 1649 FTIR_Fire107_20161112_RA.ict 20170612 1534 InletNOAA_Fire107_20161112_RA.ict 20170224 1519 Ny_Fire107_20161112_RA.ict 20161117 1551 Ny Fire107_20161112_RB.ict 20161229 1433

FLAME-IV: Data Search

Search for fires by fuel type ...

The 📕 indicates files in Igor binary format.

The X indicates no files will be available - contact the PI.

Download the entire data set (be patient as these files can be large and slow):

Gas Phase Ig terret	Aerosol	Smoke Proccessing	Mini Chamber 🜆 🔤
FTIR III R0	GCGCB	AMLGAS	SPAMSMIT
NO3CIMS	SPOT	PTRMS	AMSMIT
	AMSNOAA	ECHAMP	CAPSMIT
	DIMS	ICIMSAero	SP2UCD
	PILSPNNL	LTOFAMS	CRDPASUCD
H3OCIMS	BrCPiLS	SMPS	SEMSUCD
H3OCIMS-no-ID	BBCEAS	OPC	PASS3UCD
GCMS	CRDPASNOAA	TDCAPS	H3OCIMS
	NEPH		ICIMSCU
CIMSUNC	PILSESI	BC Intercomparison	
MC	FilterSampler	FCOC	
	PILSUNC	PAX870	
	PAXUMT	AE31	
MCICOFF	InletNOAA	microAETH	
RN		ABCD	
GCGCR		ТАР	
SPE		CLAR	
		SP2NUAA	
		00050	
		CO2OSU	